RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM

Jordan M. Wilson

PhD Candidate

S.

Subhas K. Venayagamoorthy

Associate Professor

Department of Civil & Environmental Engineering, Colorado State University, Fort Collins, CO, USA.

2nd Symposium on OpenFOAM in Wind Energy

University of Colorado, Boulder, CO, USA.

Talk Outline

- Motivation
- Theoretical Background
- Numerical Setup
- Simulation Results
- Conclusions
- Future Research

- The atmospheric boundary layer (ABL) is a very turbulent flow $Re \sim 0(10^7)$
- Turbulent processes influence the transport of momentum, heat, humidity, and scalars.

Wind Energy

Weather

Climate Change

Air Quality

 The ABL experiences a diurnal cycle (~24 hr) due to the radiative heating and cooling of the earth's surface

Stull (1988)

Stull (1988)

Unstable ABL

- Positive surface heat flux
- Mixing is enhanced by convection
- Surface, free convection, and mixed layers

Neutral ABL

- Uniform temperature distribution
- Logarithmic wind profile
- Relatively well understood

Stable ABL

- Negative surface heat flux
- Mixing is suppressed resulting in a shallow layer
- Exhibit inertial phenomena (e.g. jets and waves)

- The Stable Atmospheric Boundary Layer (SABL)
 - Buoyancy forces lead to:
 - Wave formation and breaking (intermittent turbulence)
 - Low-level jets
 - Suppressed turbulent scales
 - These effects present significant challenges for wind energy
 - Increased shear forces and fatigue loading on wind turbines

- Reynolds-Averaged Navier-Stokes (RANS) Framework
 - Continuity

$$\bullet \ \frac{\partial \overline{U}_j}{\partial x_i} = 0$$

- Momentum

•
$$\frac{\overline{D}\overline{U}_{j}}{\overline{D}t} = -\frac{1}{\rho_{0}}\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{i}}\left[\nu_{eff}\left(\frac{\partial \overline{U}_{i}}{\partial x_{i}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}}\right)\right] + g\delta_{ij3} + 2\Omega_{ij} \times \overline{U}_{ij} + F_{j}$$

•
$$v_{eff} = v + v_t$$

- Scalar (Density) Transport

•
$$\frac{\overline{D}\overline{\rho}}{\overline{D}t} = \frac{\partial}{\partial x_i} \left(\kappa_{eff} \frac{\partial \overline{\rho}}{\partial x_i} \right)$$

•
$$\kappa_{eff} = \kappa + \kappa_{t} \Rightarrow \kappa_{t} = \frac{\nu_{t}}{Pr_{t}}$$

- Quantifying Stability
 - Gradient Richardson Number (Ri)
 - Ri = $\frac{N^2}{S^2}$
 - Where $N=\sqrt{-\left(\frac{g}{\rho_0}\right)\frac{d\overline{\rho}}{dz}}$ is the buoyancy frequency and $S=\frac{d\overline{u}}{dz}$ is the mean shear
 - Flux Richardson Number (Ri_f)
 - $Ri_f = \frac{-B}{P}$
 - Where $B=-\left(\frac{g}{\rho_0}\right)\overline{w'\rho'}=\kappa_t\left(\frac{g}{\rho_0}\right)\frac{d\overline{\rho}}{dz}$ is the buoyancy production and $P=-\overline{u'w'}S=v_tS^2$ is the shear production
 - Monin-Obukhov length
 - $L = -\frac{u_*^3}{\left(\frac{g}{\rho_0}\right)\kappa(\overline{w'\rho'})_s}$

- k ε Turbulence Model
 - Shown to perform well for stably stratified geophysical flows (e.g. Rodi 1987; Baumert & Peters 2000) and SABL (Detering & Etling 1985; Apsley & Castro 1997)
- Turbulent kinetic energy (k)

$$-\frac{\bar{D}k}{\bar{D}t} = \frac{\partial}{\partial x_i} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x_i} \right) + P + B - \varepsilon$$

Dissipation rate of turbulent kinetic energy (ε)

$$-\frac{\overline{D}\varepsilon}{\overline{D}t} = \frac{\partial}{\partial x_i} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_i} \right) + C_{\varepsilon 1} (P + C_{\varepsilon 3} B) \frac{\varepsilon}{k} - C_{\varepsilon 2} \frac{\varepsilon^2}{k}$$

Turbulent viscosity (v_t)

$$- \nu_t = (1 - Ri_f)C_{\mu} \frac{k^2}{\epsilon}$$

σ_k	$\sigma_{arepsilon}$	${\cal C}_{\mu}$	$C_{\varepsilon 1}$	$C_{arepsilon 2}$	$C_{\varepsilon 3}$
1.0	1.3	0.09	1.44	1.92	-1.44

- The Turbulent Prandtl Number (Pr_t)
 - Links eddy viscosity and diffusivity in a RANS framework
 - In modeling, generally assumed to be a constant ($Pr_t = 0.85$; e.g. Wilcox 1994)
 - However, research has shown that Pr_t is strongly linked to stability for stable stratification
 - Firstly, we will consider 3 Pr_t formulations
 - A constant value: $Pr_t = 0.85$
 - Kim & Mahrt (1992) develop a \Pr_t from the Louis (1981) model given by: $Pr_t = \frac{l_{0,m}^2}{l_{0,h}^2} \frac{\phi_m^2(Ri)}{\phi_h^2(Ri)}$

$$\Rightarrow \Pr_{t} = \Pr_{t0} \frac{1 + 15\text{Ri}(1 + 5\text{Ri})^{1/2}}{1 + 10\text{Ri}(1 + 5\text{Ri})^{-1/2}}$$
 (KM92)

• The Turbulent Prandtl Number (Pr_t)

- Venayagamoorthy & Stretch (2010) developed a Pr_t formulation for stably stratified homogeneous shear flows from the empirical model of Schumann & Gerz (1995)
- Sought to generalize a Prandtl number formulation to include irreversible contributions and the neutral value of \Pr_t
- For the weakly stratified regime (Ri ≤ 0.25)

•
$$Pr_t = Pr_{t0} + Ri$$

For the strongly stratified regime (large Ri)

•
$$Pr_t = \frac{1}{Ri_{fm}}Ri$$

Fitting a blending function between these two regimes results in:

•
$$Pr_t = Pr_{t0} \exp\left(-\frac{Ri}{Pr_{t0}\Gamma_{\infty}}\right) + \frac{Ri}{Ri_{f\infty}}$$
 (VS10)
$$- Pr_{t0} \simeq 0.7$$

 $-\Gamma = \frac{Ri_f}{(1-Ri_f)} \Rightarrow Ri_{f\infty} \simeq 0.25 \Rightarrow \Gamma_{\infty} = 1/3$ 2nd Symposium on OpenFOAM in Wind Energy

Schumann & Gerz (1995)

Starting with 2 simplified flow cases

- Stably stratified turbulent Couette flow
 - Based on the DNS work of Garcia-Villalba et al. (2011a)

$$-Re_{\tau} = 540, Ri_{\tau} = 83.5$$

 $-Re_{\tau} = 540, Ri_{\tau} = 167$

$$Re_{\tau} = \frac{u_{\tau}\delta}{v}$$

Stably stratified turbulent channel flow

 Based on the DNS work of Garcia-Villalba & del Alamo (2011b)

$$-Re_{\tau} = 550, Ri_{\tau} = 60$$

$$-Re_{\tau} = 550, Ri_{\tau} = 120$$

$$Ri_{\tau} = \frac{\Delta \rho g h}{\rho_0 u_{\tau}^2}$$

OpenFOAM

```
Couette flow
```

```
tmp<fvVectorMatrix> UEqn
    fvm::div(phi, U)
   + turbulence->divDevReff(U)
     sources(U)
  Ueqn.relax();
  sources.constrain(UEqn());
  UEqn().solve();
```

OpenFOAM

- Channel flow

```
tmp<fvVectorMatrix> UEqn
    fvm::div(phi, U)
   + turbulence->divDevReff(U)
    sources(U)
  UEqn().relax();
  sources.constrain(UEqn());
  solve(UEqn() == -gradP);
```

- OpenFOAM
 - Density transport equation

OpenFOAM

Modified $k-\varepsilon$ turbulence model

Lookup mean density field

rho.db().lookupObject<volScalarField>("rho");

Calculate density gradient

gradRho_ = fvc::grad(rho_);
gradrho_ = gradRho_.component(2);

Calculate buoyancy frequency (squared)

N2_ = (-g_/rho0_)*gradrho_;

Calculate gradient Richardson number

 $Rig_=(N2_{(2.0*magSqr(symm(fvc::grad(U_)))))};$

Calculate buoyancy production

B_ = (nut_/Prt_)*(g_/rho0_)*grahrho_;

Calculate flux Richardson number

Rif_ = min(1.0,-B_/max(Gk_,epsilonMin_));

Modified ε equation

... C1_*(G + C3_*B))*epsilon_/k_ ...

Modified v_t equation

 $nut_ = (1.0 - Rif_)*Cmu_*sqr(k_)/epsilon_;$

- OpenFOAM
 - Boundary conditions
 - Inlet and outlet cyclic
 - Front and back empty
 - Top and bottom walls
 - Standard wall functions
 - nutkWallFunction
 - kqRWallFunction
 - epsilonWallFunction
 - Second-order accuracy discretization

•
$$Ri_{\tau} = 167$$

•
$$Ri_{\tau} = 167$$

•
$$Ri_{\tau} = 60$$

•
$$Ri_{\tau} = 60$$

•
$$Ri_{\tau} = 60$$

- All Pr_t formulations overestimate mixing of the mean density field
 - Pr_t formulation of Karimpour & Venayagamoorthy (2014) for wallbounded flows
 - Linear stress distribution in a channel flow

•
$$\tau = \tau_w \left(1 - \frac{z}{D}\right)$$

Unstratified Pr_t in a wall bounded flow

•
$$Pr_{t0} = \left(1 - \frac{z}{D}\right) Pr_{twd0} + Pr_{t0} \approx 1.1$$

The turbulent viscosity in the log-law region is given by

•
$$v_t = \frac{u_t^2}{S} \left(1 - \frac{z}{D}\right)$$

 Further assumptions for the log-law region in a wall-bounded flow and subsequent substitutions results in

•
$$Pr_t = \left(1 - \frac{z}{D}\right) \frac{Ri}{Ri_f} + \left(1 - \frac{z}{D}\right) Pr_{twd0} + Pr_{t0}$$
 (KV14)

• Where $Ri_f = 0.25[1 - exp(-\gamma Ri)]$

•
$$Ri_{\tau} = 60$$

•
$$Ri_{\tau} = 120$$

Conclusions

- In stably stratified flows, mean velocity and density fields are evaluated
 - Accurate prediction of mean density proves more difficult than mean velocity
- For Couette flow, constant and homogeneous Pr_t formulations predict mean velocity and density fields well
- For channel flow, constant and homogeneous Pr_t formulations predict mean velocity well but overpredict mixing in the mean density field.
 - An inhomogeneous, wall-bounded \Pr_t formulation significantly improves the prediction of mean density

Future Research

- Moving towards the stable ABL and wind turbine interactions
- Coriolis force (Ekman layer), surface roughness

Garratt (1992)

NREL 5MW Turbine Interactions under neutral conditions

Cuestions

- Acknowledgements
 - M. Garcia-Villalba and J.E. del Alamo for providing their detailed postprocessed DNS data of channel flow simulations

- Photo credit: Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC
 - ATMOSPHERIC GRAVITY WAVES AND INTERNAL WAVES OFF AUSTRALIA